Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Nat Commun ; 15(1): 2920, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575569

RESUMO

Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices.

2.
Sci Total Environ ; 927: 172155, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575028

RESUMO

As of 2022, China's rural sewage treatment rate is only approximately 31 %. Rapid rural development has led to higher demand. However, China's rural areas are complex and face many problems, such as uneven economic development, population distribution, and water availability. Long-lasting and low-cost wastewater treatment measures are needed for application in rural areas. The quantity and quality of rural domestic wastewater in China were characterized first. Next, the hot topic of domestic wastewater in Chinese villages was confirmed via bibliometric analysis using CiteSpace, and the treatment technologies for rural domestic wastewater were compared. Specifically, the technical status and challenges of the most common technology in rural domestic wastewater treatment, constructed wetlands, were summarized.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , China , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , População Rural , Purificação da Água/métodos , População do Leste Asiático
3.
Signal Transduct Target Ther ; 9(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594257

RESUMO

G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Estados Unidos , Humanos , Receptores Acoplados a Proteínas G/química , Sítio Alostérico , Desenho de Fármacos , Ligantes
4.
Huan Jing Ke Xue ; 45(3): 1402-1414, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471856

RESUMO

In this study, surface sediment samples were collected from Dongting Lake, Honghu Lake, and Chihu Lake, and the concentrations of 10 heavy metals were measured. Then, the potential risk of heavy metal accumulation was evaluated using the cumulative pollution index (Igeo), the enrichment factor (EF), and the potential ecological risk index (RI), and the sources were traced using correlation analysis (Pearson) and principal component analysis (PCA). The results showed that the pollution and potential ecological risk of Cd were the most serious. The mean values of Cd in East Dongting Lake, Honghu Lake, and Chihu Lake were 2.85, 1.59, and 3.57 mg·kg-1, respectively. The concentrations of Cd were 25.87, 11.36, and 37.58 times higher than the soil background values of the corresponding provinces, which exceeded the risk screening value (0.6 mg·kg-1). Particularly, the Cd concentration of Chihu Lake exceeded the risk control value (3.0 mg·kg-1). Besides Cd, the concentration of As in Honghu Lake was also of concern. At the same time, the Cu, As, Zn, and Pb in Chihu Lake should not be neglected. The potential ecological risks of the three lakes were ranked as follows:Chihu Lake (RI=1 127)>East Dongting Lake (RI=831)>Honghu Lake (RI=421). The primary sources of heavy metals were industrial mining, agricultural production, and aquaculture, and some heavy metals (Mn and Cu) were from natural sources. This study was of great significance for the prevention and control of heavy metals in the sediments of typical lakes in the middle reaches of the Yangtze River.

5.
Chemosphere ; 355: 141788, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548088

RESUMO

N/S co-doping has emerged as a prevailing strategy for carbon-based adsorbents to facilitate the antibiotic removal efficiency. Nevertheless, the underlying interplay among N, S, and their adjacent vacancy defects remains overlooked. Herein, we present a novel in situ strategy for fabricating pyridinic-N dominated and S dual-doped porous carbon adsorbent with rich vacancy defects (VNSC). The experimental results revealed that N (acting as the electron donor) and S (acting as the electron acceptor) form an internal electric field (IEF), with a stronger IEF generated between pyridinic-N and S, while their adjacent vacancy defects activate carbon π electrons, thus enhancing the charge transfer of the IEF. Density functional theory (DFT) calculations further demonstrated that the rich charge transfer in the IEF facilitated the π-π electron donor-acceptor (EDA) interaction between VNSC and tetracycline (TC) as well as norfloxacin (NOR), and thus is the key to adsorption performance of VNSC. Consequently, VNSC exhibited high adsorption capacities toward TC (573.1 mg g-1) and NOR (517.0 mg g-1), and its potential for environmental applications was demonstrated by interference, environmentally relevant concentrations, fixed-bed column, and regeneration tests. This work discloses the natures of adsorption capacity for N/S dual-doped carbon-based materials for antibiotics.


Assuntos
Antibacterianos , Norfloxacino , Porosidade , Tetraciclina , Adsorção , Carbono , Oxidantes
6.
Anal Bioanal Chem ; 416(10): 2493-2501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451276

RESUMO

Exposure to poly- and perfluoroalkyl substances (PFASs) can result in bioaccumulation. Initial findings suggested that PFASs could accumulate in tissues rich in both phospholipids and proteins. However, our current understanding is limited to the average concentration of PFASs or phospholipid content across entire tissue matrices, leaving unresolved the spatial variations of lipid metabolism associated with PFOA in zebrafish tissue. To address gap, we developed a novel methodology for concurrent spatial profiling of perfluorooctanoic acid (PFOA) and individual phospholipids within zebrafish hepatic tissue sections, utilizing matrix-assisted laser desorption/ionization time of flight imaging mass spectrometry (MALDI-TOF-MSI). 5-diaminonapthalene (DAN) matrix and laser sensitivity of 50.0 were optimized for PFOA detection in MALDI-TOF-MSI analysis with high spatial resolution (25 µm). PFOA was observed to accumulate within zebrafish liver tissue. H&E staining results corroborating the damage inflicted by PFOA accumulation, consistent with MALDI MSI results. Significant up-regulation of 15 phospholipid species was observed in zebrafish groups exposed to PFOA, with these phospholipid demonstrating varied spatial distribution within the same tissue. Furthermore, co-localized imaging of distinct phospholipids and PFOA within identical tissue sections suggested there could be two distinct potential interactions between PFOA and phospholipids, which required further investigation. The MALDI-TOF-IMS provides a new tool to explore in situ spatial distributions and variations of the endogenous metabolites for the health risk assessment and ecotoxicology of emerging environmental pollutants.


Assuntos
Caprilatos , Fluorocarbonos , Perciformes , Animais , Fosfolipídeos/análise , Peixe-Zebra , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fígado/química , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo
7.
Acta Pharm Sin B ; 14(3): 1302-1316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487000

RESUMO

Pancreatic cancer, one of the most aggressive malignancies, has no effective treatment due to the lack of targets and drugs related to tumour metastasis. SIRT6 can promote the migration of pancreatic cancer and could be a potential target for antimetastasis of pancreatic cancer. However, highly selective and potency SIRT6 inhibitor that can be used in vivo is yet to be discovered. Here, we developed a novel SIRT6 allosteric inhibitor, compound 11e, with maximal inhibitory potency and an IC50 value of 0.98 ± 0.13 µmol/L. Moreover, compound 11e exhibited significant selectivity against other histone deacetylases (HADC1‒11 and SIRT1‒3) at concentrations up to 100 µmol/L. The allosteric site and the molecular mechanism of inhibition were extensively elucidated by cocrystal complex structure and dynamic structural analyses. Importantly, we confirmed the antimetastatic function of such inhibitors in four pancreatic cancer cell lines as well as in two mouse models of pancreatic cancer liver metastasis. To our knowledge, this is the first study to reveal the in vivo effects of SIRT6 inhibitors on liver metastatic pancreatic cancer. It not only provides a promising lead compound for subsequent inhibitor development targeting SIRT6 but also provides a potential approach to address the challenge of metastasis in pancreatic cancer.

8.
ACS Nano ; 18(9): 6896-6907, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38376996

RESUMO

Microscale patterning of colloidal perovskite nanocrystals (NCs) is essential for their integration in advanced device platforms, such as high-definition displays. However, perovskite NCs usually show degraded optical and/or electrical properties after patterning with existing approaches, posing a critical challenge for their optoelectronic applications. Here we achieve nondestructive, direct optical patterning of perovskite NCs with rationally designed carbene-based cross-linkers and demonstrate their applications in high-performance light-emitting diodes. We reveal that both the photochemical properties and the electronic structures of cross-linkers need to be carefully tailored to the material properties of perovskite NCs. This method produces high-resolution (∼4000 ppi) NC patterns with preserved photoluminescent quantum efficiencies and charge transport properties. Prototype light-emitting diodes with patterned/cross-linked NC layers show a maximum luminance of over 60000 cd m-2 and a peak external quantum efficiency of 16%, among the highest for patterned perovskite electroluminescent devices. Such a material-adapted patterning method enabled by designs from a photochemistry perspective could foster the applications of perovskite NCs in system-level electronic and optoelectronic devices.

9.
Environ Sci Process Impacts ; 26(4): 700-709, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38376352

RESUMO

Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant. Exposure to PFOA was observed to have a correlation with the expression levels of phospholipids. However, there are currently no studies that directly visualize the effects of PFOA on phospholipids. To this end, matrix-assisted laser desorption/ionization time of flight imaging mass spectrometry (MALDI-TOF-IMS) was used to visualize changes in phospholipids in the different tissues of zebrafish following exposure to PFOA. This study found that the major perturbed phospholipids were phosphatidylcholine (PC), diacylglycerol (DG), phosphatidic acid (PA), phosphatidylglycerol (PG), sphingomyelin (SM), and triacylglycerol (TG). These perturbed phospholipids caused by PFOA were reversible in some tissues (liver, gill, and brain) and irreversible in others (such as the highly exposed intestine). Moreover, the spatial distribution of perturbed phospholipids was mainly located around the edge or center of the tissues, implying that these tissue regions need special attention. This study provides novel insight into the biological toxicity and toxicity mechanisms induced by emerging environmental pollutants.


Assuntos
Caprilatos , Fluorocarbonos , Fosfolipídeos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fluorocarbonos/metabolismo , Fosfolipídeos/metabolismo , Caprilatos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
10.
Front Bioeng Biotechnol ; 12: 1303670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390364

RESUMO

Antibiotics are an important pharmaceutical class excessively used by humans. Its presence in the soil can impact plant growth and induce antibiotic resistance. This research studies the effect of sulfamethoxazole (SMX) on plant growth, rhizosphere bacteria composition, and resistance genes. Two sets of vegetables (basil, cilantro, and spinach) were treated separately with water and SMX solution. The plant growth data and soil samples were collected and analyzed. The results revealed that SMX increased spinach leaf length (34.0%) while having no significant impacts on basil and cilantro. On the other hand, SMX improved the bacterial diversity in all samples. The shifts in the abundance of plant growth-promoting bacteria could indirectly affect vegetable stem and leaf length. SMX also significantly increased the abundance of resistance genes Sul1 and Sul2. A further study into the correlation between bacteria highlights the importance of Shingomonas and Alfipia for inhibiting the spread of key resistance gene hosts, namely, Pseudomonas, Stenotrophomonas, and Agrobacterium. This research provides insight into SMX's impact on vegetable growth and microbial diversity. It also points out important microbial interactions that could potentially be utilized to mitigate ARG proliferation.

11.
Environ Sci Pollut Res Int ; 31(10): 14537-14552, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308167

RESUMO

Constructed wetland substrates (CWSs) have received considerable attention owing to their importance in adsorbing and degrading pollutants, providing growth attachment points for microorganisms, and supporting wetland plants. There are differences in the configurations and functions of constructed wetlands (CWs) for treating different water bodies and sewage, resulting in a wide variety of substrates. Research on the application and mechanism of CWSs is not sufficiently systematic. Therefore, the current research advancements and hotspots must be identified. Hence, we used CiteSpace to analyze 1955 English publications from the core collection database of the Web of Science to assess the current state of the CWS research field. Based on the cooperative network analysis, the roles of various countries, institutions, and authors in research on CWSs were reviewed. Keyword co-occurrence and cluster analyses were used to discuss the transformation of CWSs from removing traditional pollutants to emerging pollutants and the transition from incorporating natural substrates to artificial substrates. Finally, we underscored the need for more emphasis to be placed on the collocation and application of the CWSs at different latitudes. Furthermore, the substrate micro-interface process and its effects on the interaction patterns of pollutants and microorganisms should be thoroughly investigated to provide theoretical guidance for the development of wetland applications and mechanisms.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Humanos , Análise por Conglomerados , Bases de Dados Factuais , Esgotos
12.
Nucleic Acids Res ; 52(D1): D376-D383, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37870448

RESUMO

Allosteric regulation, induced by perturbations at an allosteric site topographically distinct from the orthosteric site, is one of the most direct and efficient ways to fine-tune macromolecular function. The Allosteric Database (ASD; accessible online at http://mdl.shsmu.edu.cn/ASD) has been systematically developed since 2009 to provide comprehensive information on allosteric regulation. In recent years, allostery has seen sustained growth and wide-ranging applications in life sciences, from basic research to new therapeutics development, while also elucidating emerging obstacles across allosteric research stages. To overcome these challenges and maintain high-quality data center services, novel features were curated in the ASD2023 update: (i) 66 589 potential allosteric sites, covering > 80% of the human proteome and constituting the human allosteric pocketome; (ii) 748 allosteric protein-protein interaction (PPI) modulators with clear mechanisms, aiding protein machine studies and PPI-targeted drug discovery; (iii) 'Allosteric Hit-to-Lead,' a pioneering dataset providing panoramic views from 87 well-defined allosteric hits to 6565 leads and (iv) 456 dualsteric modulators for exploring the simultaneous regulation of allosteric and orthosteric sites. Meanwhile, ASD2023 maintains a significant growth of foundational allosteric data. Based on these efforts, the allosteric knowledgebase is progressively evolving towards an integrated landscape, facilitating advancements in allosteric target identification, mechanistic exploration and drug discovery.


Assuntos
Sítio Alostérico , Bases de Conhecimento , Humanos , Regulação Alostérica , Descoberta de Drogas , Ligantes , Proteoma , Mapas de Interação de Proteínas
13.
Artigo em Inglês | MEDLINE | ID: mdl-38154657

RESUMO

Microcystins (MCs) are the most widespread, frequently found, and seriously toxic cyanobacterial toxins in aquatic environments. Microcystin-leucine-arginine (MCLR) and microcystin-arginine-arginine (MCRR) are the most studied MCs. Normally, their levels are low and they coexist in the environment; however, they may also interact with each other. The developmental toxicity of MCLR in the presence of MCRR in the early life stage of zebrafish (from 2 to 120 h post fertilization) was investigated for the first time in this study. Our findings revealed that MCRR treatment marginally elevated thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels, whereas MCLR treatment alone resulted in a significant increase in T3 and T4 levels, indicating a cooperative effect. Furthermore, clear changes in the expression levels of genes involved in growth and development, accompanied by growth inhibition, were observed after co-treatment with MCRR and MCLR. In addition, zebrafish larvae subjected to MCRR and/or MCLR treatment showed increased levels of superoxide dismutase, glutathione, and malondialdehyde, and decreased levels of catalase in the MCRR + MCLR group, indicating oxidative stress and lipid peroxidation. Thus, we investigated the synergistic developmental toxicity of MCRR and MCLR during the early life stages of zebrafish development.


Assuntos
Toxinas Marinhas , Microcistinas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Microcistinas/toxicidade , Larva , Arginina/metabolismo
14.
J Hazard Mater ; 463: 132802, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37922584

RESUMO

Improvements in plant activity and functional microbial communities are important to ensure the stability and efficiency of pollutant removal measures in cold regions. Although electrochemistry is known to accelerate pollutant degradation, cold stress acclimation of plants and the stability and activity of plant-microbial synergism remain poorly understood. The sulfamethoxazole (SMX) removal, iron plaque morphology, plant activity, microbial community, and function responses were investigated in an electrolysis-integrated ecological floating bed (EFB) at 6 ± 2 â„ƒ. Electrochemistry significantly improved SMX removal and plant activity. Dense and uniform iron plaque was found on root surfaces in L-E-Fe which improved the plant adaptability at low temperatures and provided more adsorption sites for bacteria. The microbial community structure was optimized and the key functional bacteria for SMX degradation (e.g., Actinobacteriota, Pseudomonas) were enriched. Electrochemistry improves the relative abundance of enzymes related to energy metabolism, thereby increasing energy responses to SMX and low temperatures. Notably, electrochemistry improved the expression of target genes (sadB and sadC, especially sadC) involved in SMX degradation. Electrochemistry enhances hydrogen bonding and electrostatic interactions between SMX and sadC, thereby enhancing SMX degradation and transformation. This study provides a deeper understanding of the electrochemical stability of antibiotic degradation at low temperatures.


Assuntos
Poluentes Ambientais , Sulfametoxazol , Ferro , Temperatura , Bactérias/genética , Plantas , Eletrólise , Antibacterianos/farmacologia
15.
Drug Discov Today ; 28(12): 103803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852356

RESUMO

G-protein-coupled receptors (GPCRs) are a family of cell surface proteins that can sense a variety of extracellular stimuli and mediate multiple signaling transduction pathways involved in human physiology. Recent advances in GPCR structural biology have revealed a relatively conserved intracellular allosteric site in multiple GPCRs, which can be utilized to modulate receptors from the inside. This novel intracellular site partially overlaps with the G-protein and ß-arrestin coupling sites, providing a novel avenue for biological intervention. Here, we review evidence available for GPCR structures complexed with intracellular small-molecule allosteric modulators, elucidating drug-target interactions and allosteric mechanisms. Moreover, we highlight the potential of intracellular allosteric modulators in achieving biased signaling, which provides insights into biased allosteric mechanisms.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Humanos , Sítio Alostérico , Regulação Alostérica , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
16.
Science ; 381(6665): 1468-1474, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769102

RESUMO

3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures. Colloidal nanocrystals are used as building blocks and photochemically bonded through their native ligands. Without resins, this bonding process produces arbitrary three-dimensional (3D) structures with a large inorganic mass fraction (~90%) and high mechanical strength. The printed materials preserve the intrinsic properties of constituent nanocrystals and create structure-dictated functionalities, such as the broadband chiroptical responses with an anisotropic factor of ~0.24 for semiconducting cadmium chalcogenide nanohelical arrays.

17.
Environ Sci Pollut Res Int ; 30(46): 103033-103043, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674068

RESUMO

A sedimentary record of the 19 organochlorine pesticides (OCPs) pollutants from Dongping Lake, north China, is presented in this study. According to the dating of core sediment and OCP content analysis in samples, from 1904 to 2016, the total concentration of OCPs varied from undetectable levels (n.d.) to 33.1 ng/g. The OCP concentration was first detected in the samples of 1938, and then gradually increased to a peak level in 2000 thereafter decreased until 2016. Among the detected OCPs, hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) were the predominant and the most frequently detected contaminants in the core sediment, with concentrations ranging from n.d. to 16.9 ng/g and from n.d. to 8.8 ng/g, respectively. The distribution of OCPs in the sediments was affected by organic carbon concentration, showing a significant positive correlation (r = 0.93, p < 0.001), especially for HCHs (r = 0.98, p < 0.001). The source analysis showed that HCH contamination mainly derived from historical use of technical HCHs, while in recent years, it derived from lindane usage. DDT pollution was attributed to historical use of technical DDTs, as well as the microbial degradation of historic DDT residues. Finally, risk analysis was performed for OCPs in sediment cores based on sediment quality guidelines from the Canadian Council of Ministers of the Environment, showing that DDTs presented a high ecological toxicity risk during the period of 1959-2010.

18.
Curr Opin Struct Biol ; 83: 102701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716092

RESUMO

Allostery is a ubiquitous biological phenomenon where perturbation at topologically distal areas of a protein serves as a trigger to fine-tune the orthosteric site and thus regulate protein function. The investigation of allosteric regulation greatly enhances our understanding of human diseases and broadens avenue for drug discovery. For decades, owing to the difficulty in allostery characterization through serendipitous experimental screening, researchers have developed several innovative computational approaches, which proves to accelerate the elucidation of allostery. Herein, we review the state-of-the-art advance of computational methodologies for allostery study, with particular emphasis on promising trends emerging over the past two years. We expect this review will outline the latest landscape of allostery study and inspire researchers to further facilitate this field.


Assuntos
Descoberta de Drogas , Proteínas , Humanos , Sítio Alostérico , Descoberta de Drogas/métodos , Regulação Alostérica , Proteínas/metabolismo
19.
Huan Jing Ke Xue ; 44(9): 4906-4914, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699809

RESUMO

Chromophoric dissolved organic matter (CDOM) is an important part of the nutrient biogeochemical cycle in aquatic ecosystems. To explore the characteristics and sources of CDOM components in the surface water of Taihu Lake, UV-visible spectroscopy and excitation emission matrix fluorescence spectroscopy-parallel factor analysis were used to analyze CDOM components in surface water. Combined with CDOM optical parameters (a355, SUVA254, a250/a365, FI, BIX, and HIX), the spatial differences and pollution sources were identified, and a preliminary comparison was made between this study and the historical data of CDOM components in Taihu Lake. According to the results, a355, SUVA254, and a250/a365 showed the characteristics of high concentration, high aromatic ability, and low relative molecular weight of CDOM in the surface water of the eastern part of Taihu Lake; however, the northern part showed the opposite characteristics. Four components were isolated from CDOM using parallel factor analysis:one tyrosine-like (C1), two types of tryptophan (C2 and C4), and one fulionic acid (C3). The main component C1 had a strong linear relationship with the C2 and C3 components, suggesting that different components originated from similar pollution sources. The fluorescence index showed that CDOM in different areas of Taihu Lake were differently affected by endogenous and terrestrial inputs; however, the overall humification degree was low. This indicated that the CDOM components in Taihu Lake were primarily protein-like (C1, C2, and C4) (>85%) and autogenous, with good biochemical availability.


Assuntos
Cianobactérias , Matéria Orgânica Dissolvida , Ecossistema , Lagos , Água
20.
Environ Sci Technol ; 57(32): 11803-11813, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37505069

RESUMO

Increased epidemiological evidence indicates the association of bisphenol exposure with human vascular disorders, while the underlying mechanism has not been clarified. Here, we sought to unveil the potential angiogenic effect and the underlying mechanism of bisphenols with different structural features using endothelial cells treated with an environmentally relevant concentration of bisphenols (range: 1 nM to 10 µM) and a C57BL/6 mouse model fed with doses of 0.002, 0.02, 2, and 20 mg/kg BW/day for 5 weeks. Bisphenol A (BPA) and bisphenol S (BPS) at a 1 nM level significantly increased tube formation by 45.1 and 30.2% and induced the microvessel sprouting, while tube length and microvessel sprouting were significantly inhibited by 37.2 and 55.7% after exposure to tetrabromobisphenol S (TBBPS) at 1 µM, respectively. Mechanistically, TBBPA and TBBPS significantly inhibited the interaction between phosphatidylinositol 3-kinase (PI3K) and thyroid receptor (TR), while BPA and BPS favored the interaction between PI3K and estrogen receptor (ER), resulting in abnormal PI3K signaling with consequent distinct angiogenic activity. BPA- and BPS-induced pro-angiogenic effects and TBBPS showed anti-angiogenic effects due to their distinct disruption on the TR/ER-PI3K pathway. Our work provided new evidence and mechanistic insight on the angiogenic activity of bisphenols and expanded the scope of endocrine disruptors with interference in vascular homeostasis.


Assuntos
Disruptores Endócrinos , Células Endoteliais , Animais , Humanos , Camundongos , Fosfatidilinositol 3-Quinases , Camundongos Endogâmicos C57BL , Receptores de Estrogênio , Compostos Benzidrílicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA